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Abstract

An Euler shock-fitting marching code yields good agreement with

semiempiricaUy determined plume shapes, although the agreement de-
creases somewhat with increasing nozzle angle and the attendant in-

crease in the nonisentropie nature of the flow. Some calculations for a

low-boom configuration with a sample engine indicated that, for flight at
altitudes above 60000 ft, the plume effect is dominant. This negates the

advantages of a low-boom design. At lower altitudes, plume effects are

significant but of the order that can be incorporated into the low-boom

design process.

Introduction

Tile plume that results from an underexpan(ted

jet is a significant factor in assessing the feasibility
of potential supersonic commercial aircraft because

of its influence on the sonic boom signature and

on aerodynamic performance. Consequently, reliable

procedures for computing both the plume shape and
the effects of the plume on the sonic boom signature

are required. This report presents a comparison of

plume shapes computed by several methods, together
with an examination of the kinds of sonic boom

effects the plume introduces.

The primary reference in the current literature

on plume shapes and plume sonic boom effects is
reference 1. This reference describes a combined

experimental-computational study to determine em-

pirically the shapes of jet equivalent solid bodies,

that is, an effective discrete jet free-stream slip line.

These shapes were compared with plume shapes pre-

dicted by two computational methods. Reference 1
also inchldes some sample calculations to illustrate

the plume sonic boom effect.

The present report describes calculations that

yield a closer correlation with the semiempirically de-
termined shapes than tim methods described in ref-

erence 1. Also included is a study of the influence

of flight altitude and configuration geometry on the

problem of plume sonic boom effects with some illus-

trative examples.

Symbols

A(x) equivalent area distribution

D external nozzle exit diameter, d + Lip
thickness

d

F

h

internal nozzle diameter at jet exit, 2h

value of Whitham F-function

internal nozzle radius at jet exit

L airplane reference length

M Mach number

p static pressure

Ap = P - Po

. r radial coordinate

t time

t = 0 time at which a pulse, traveling at

ambient sound speed, arrives at

ground

x coordinate in direction of nozzle axis

c_ nozzle expansion angle

fl nozzle boattail angle

dummy integration variable

Subscripts:

j jet

o undisturbed condition

oo free stream

Plume Calculations

The plume shapes were computed with the Euler
shock-fitting marching code described in reference 2.
Calculations were made for some, but not all, of

the nozzle shapes and conditions included in the

investigation described in reference 1. Calculations
were not made for the boattailed shapes because

the plume code could not treat this Case without
modification.

The type of nozzle that was tested is depicted in

figure 1. The nozzle, divergence angles c_ for _hc non-
boattailed shapes were 7.28 °, 9.06 °, and 11.50 °. The
measurements of reference 1 indicated that, for the

two larger divergence angles, an internal shock was
generated inside the nozzle. This shock is apparently
associated with the curvature discontinuity that oc-
curs where the circular-arc throat section meets the

conical nozzle section. The experimental results in-

dicated that this shock was relatively weak and its



presencewasnotconsideredin thedirectcalculation
of the plumeshapeor in thecalculationof theexit
Mathnumber.

Figure2 showsa set of calculationsfor plumes
emittedfromthenozzlewith _ = 11.5°. In this fig-
ure, the solidline indicatesthesemiempiricallyde-
terminedjet equivalentplumeshape.It wasobtained
bymeasuringtheflowconditionsalongalineoutside
theplumeandparallelto thenozzleaxis.Then,with
theseinitial conditions,acharacteristicnetwascom-
putedinward,takingthestreamlinethat matchesthe
nozzlelip asthejet e(luivalentsolidbody.

The dashlines in figure2 denotecalculations,
reportedin reference1, by a linearizedtechnique
describedin reference3. Thelong-dashshort-dash
lines,alsofrom reference1, denotecalculationsby
a methodof characteristicsassumingstraightshock
linesand conicalnozzleflow. The circlesdenote
calculationsby theEulermethodof reference2.

All thesecalculationspredictplumeshapeslarger
than the semiempirieallydeterminedshapes.The
discrepancyis significantlysmallerfor tile Euler
calculation.

Figure3showsasimilarcomparisonof computed
andsemiempiricallydeterminedshapesfor a nozzle
with c_ = 9.06 °. For this nozzle, the points calculated

by the Euler method represent a (.'lose approximation

to the empirical shape, although it is still slightly
overpre(ticted.

The nozzle with o_= 7.28 ° was tested at only one

pressure ratio. For this case, shown in figure 4, the

Euler method yields an excellent representation of
the empirically determined shape.

Thus these results indicate that as tile nozzle ex-

pansion angle increases, the correlation of tile Euler

calculations and the empirical results tends to de-

teriorate. As the nozzle angle increases, the obser-
vation was made that an internal shock forms. If

this shock significantly reduces the Math number at

tile nozzle lip, this effect would account for at least

part of the disagreement, since the exit Mach num-

ber is computed in reference 1 with the assumption
of isentropie nozzle flow. However, a number of other
factors could be involved. These factors include vis-

cous effects, tile effect of tile bluntness of the nozzle

lip, and assumptions involved in initializing the Euler

plume code. Some attempts were made to determine

the precise nozzle exit flow by computing the inter-
hal nozzle flow field by time-relaxation Euler codes,

but these attempts failed to yield the type of shock

structure observed in the experimental results.
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No fllrther attempt was made to investigate tile

various sources of error. The accuracy of the com-

puted shapes is probably consistent with the accu-
racy of the approximate procedures that are used
to obtain the effective area distributions that are

required for sonic boom calculations (ref. 4). For
the purpose of comparing computed shapes with the

semiempirical shapes of reference 1, a simple adjust-

ment formula couht be applied, since tile discrepancy

increases with nozzle divergence angle in a systematic
manner.

Sonic Boom Considerations

Once the jet plumes have been modelled as equiv-

alent solid bodies their sonic boom effects (:an rcadily

be determined. The equivalent solid body is simply

treated as an extension of the engine nacelle. Then

an equivalent area distribution obtained from pro-

jected Maeh slice cuts through the configuration is
generated. This area distribution is added to an
equivalent area distribution due to lift to obtain a

total area distribution A(x). This area distribution

is related to the sonic boom wave shape through tile

"F-function" which is defined by the formula

1 j_ox AU(x- _) dcr(x) =

The wave shape is determined directly from the
F-function, and the groun<t level signature is de-

termined by a propagation and shock-fitting code.

These concepts are explained in greater detail in the

standard sonic boom literature. (See, for example,
ref. 5.)

In view" of the wide variety of approaches to

configuration geometry and aircraft cruise conditions

that are being considered for civil supersonic aircraft,
it wouht not be practical at this point to attempt to

compute plume effects for each case. However, a few"

calculations in addition to those already reported in

reference 1 may serve to indicate the types and orders
of magnitude of the effects to be expected.

Some factors involved are the flight Maeh num-
ber and altitude, the configuration geometry, and the

manner in which the engine nacelles are integrated

into the geometry. Configurations that are designed

for diminished sonic boom levels are usually laid out

in such a way that the lift is distributed longitudi-
nally to tile greatest possible extent. The result is

a planform somewhat like that shown schematically

in figure 5(a). This geometry may be compared with

that of a conventional supersonic fighter-type design

with a more concentrated lift, distribution (fig. 5(b))
or with a conventional civil transport configuration



without highlydistributedlift but with anexten-
sivelynotchedarrowwing(fig.5(c)).

For a relativelyhighflight altitude,the ambient
pressureis solowthat thenozzleflowis greatlyun-
dercxpandedand consequentlylargeplumeeffects
arerealized.Forexample,figure6 showstheplume
shapecomputedfor a highperformanceafterburn-
ing enginewith assumedambientpressureequiva-
lent to that at 60000ft (Moc= 3.0,pj/Poo = 8.86).
Flow parameters for this engine were computed by

the method of reference 6. The pluming is signifi-

cant, and consequently, the plumes for the four en-

gines would contribute a significant equivalent area.
The actual effect on the F-function and ground level

signature is shown in figure 7 for a low-boom con-

figuration of the type shown in figure 5(a). Fig-

urc 7(a) represents the F-function and signature with

a cylindrical afterbody (no pluming) assumed, and

figure 7(b) shows the corresponding results with the
plume of figure 6. The plume has a dominant effect

on the sonic boom signature for this case. The com-

pression associated with the plume causes a shock of

such magnitude that it moves forward and overrides
the nose shock. The ground level overprcssure is in-

creased from a level slightly under 1 psf (fig. 7(a)) to

about 2.2 psf (fig. 7(b)). It would not be feasible to
attempt to tailor the configuration to allow for the

additional area associated with this plume, since this

area is so large.

However, the problem is mitigated at lower alti-

tudes where the ambient pressure is higher and the

plume is consequently smaller. Figure 8 shows the

plume shape (with the same engine) for flight at
55 000 ft and Mcc = 2.1. This plume is considerably

smaller than that shown in figure 6, but it still has

a significant effect on the F-function and signature.

Figure 9(a) gives these results for the configuration
with no plume, and figure 9(b) gives the correspond-

ing results with the plume effect included. In this

case the plume compression significantly alters the

F-function and the signature, but the effect is much
smaller than in the previous case.

A cursory effort was made to reduce the plume

effect further by staggering the engine nacelles a dis-
tance of 10 ft and making modest changes (about

20-percent local variation) in the fuselage area dis-

tribution. The result, shown in figure 10, is some

reduction of the plume effect. The maximum over-

pressure is reduced from 1.8 to 1.6 psf. Further re-
duction could probably be realized through a more

systematic design approach (ref. 7), which might in-

corporate techniques such as those of references 8
and 9.

Reducing the flight altitude from 65000 to
55 000 ft is so effective in reducing the plume effect

that it would appear that, by extrapolation, a further

reduction in cruise altitude, say to 45000 ft, would

render the plume effect negligible. However, such

an extrapolation cannot be made. The high perfor-

mance afterburning engines are not appropriate for
the lower altitude flight, which would be associated
with a lower Mach number.

Consequently, a sample case was computed for

M -- 1.6 flight at Moc -- 1.6 and 45 000 ft with con-

ventional turbo engines having an internal nozzle ex-

pansion of about 58 percent. The results are shown

in figures 11 and 12. Figure 11 shows the plume

shape. Figure 12(a) shows the F-function and signa-
ture with the assumption of a cylindrical plume, and

figure 12(b) gives the corresponding results with the

plume shape of figure 11. Again, a slight reduction

in the plume effect can be realized by staggering the

engines and tailoring the fuselage (fig. 13). This tai-
loring is substantial, about a 40-percent variation in

cross-sectional area, as is shown in figure 14.

The results given in figures 9 and 11 may be com-

pared with some calculations shown in figure 20 of

reference 1. Those calculations demonstrate that, for

configurations like the ones depicted in figures 5(b)

and 5(c), relatively small jet plumes actually have a
favorable effect on the sonic boom siguature. The

explanation for this difference involves both the am-

plitude of the aft expansion region of the F-function
and the location of the plume effect relative to this

expansion region. Low-boom configurations have a
relatively gradual, low amplitude expansion (as illus-

trated in figs. 7(a), 9(a), and 12(a)), which results
in a ground level amplitude of about 1.0 to 1.5 psf.

When the compressive effect of the plume is imposed

on the expanding flow, it is only partially cancelled

by the expansion and leaves a secondary compres-
sion. On the other hand, a conventional configura-

tion design, like that of figure 5(b) or (c), has a more

sudden and larger amplitude expansion region in the
F-function; this leads to a ground level amplitude on

the order of 2.5 psf (ref. 1). In this case, the plume

compression can be completely submersed in this

expansion.

Figure 5(b) also illustrates another means that

can be effective in controlling the location of the

plume. Engine nacelles mounted on the fuselage can

be situated in the optimum longitudinal position.

It should be emphasized that the configurations of

figures 5(b) and (c) are not low-boom designs. Even
with some reduction of the tail wave strength, the
concentrated lift distributions associated with such



designs generally yield unacceptably high compres-

sive overpressures.

Concluding Remarks

An Eulcr shock-fitting marching code yiclded rel-

atively good agreemcnt with semiempirically deter-

mined plume shapcs, although the agreement de-

creased somewhat with increasing nozzle expansion

angle. Some evidence indicates that the discrepancy

may bc attributable to nonisentropic internal noz-

zle flow which is not accounted for in initializing the

plume calculation.

Some calculations were carried out to obtain a

general assessment of the nature and orders of mag-

nitudes of the plume effects on tile sonic boom

signature. The calculations were for a low-boom

configuration with a high performance engine. The

results indicated that, for flight at altitudes above

60 000 ft, the plume effects were dominant; but for al-

titudes below 55 000 ft, they were significant but not

dominant.

Some factors associated with incorporating the

plume shape into the configuration design were also

discussed.

NASA Langley Research Center

Hampton, VA 23665-5225

January 24, 1992
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(a) Low-boom design.

f

(b) Fighter configuration with nacelles mounted from fuselage.

(c) Commercial transport with notched wings.

Fignrc 5. Three types of supersonic configurations.
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